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Società Italiana di Fisica
Springer-Verlag 2000

Rapid Note

Magnetic field induced ordering in quasi-one-dimensional
quantum magnets

S. Wessel and S. Haasa

Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA

Received 24 March 2000

Abstract. Three-dimensional magnetic ordering transitions are studied theoretically in strongly anisotropic
quantum magnets. An external magnetic field can drive quasi-one-dimensional subsystems with a spin gap
into a gapless regime, thus inducing long-range three-dimensional magnetic ordering due to weak residual
magnetic coupling between the subsystems. Compounds with higher spin degrees of freedom, such as N-leg
spin-1/2 ladders, are shown to have cascades of ordering transitions. At high magnetic fields, zero-point
fluctuations within the quasi-1D subsystems are suppressed, causing quantum corrections to the ordering
temperature to be reduced.

PACS. 75.10.Jm Quantized spin models – 75.30.-m Intrinsic properties of magnetically ordered materials
– 75.50.Ee Antiferromagnetics

Compounds with strongly anisotropic crystal structures
typically exhibit low-dimensional behavior at high tem-
peratures. At low temperatures, the specific nature of
their quantum fluctuations determines whether three-
dimensional (3D) ordering [1] or other instabilities [2] oc-
cur, or whether there is no transition at all [3]. In par-
ticular, weakly coupled Heisenberg spin-1/2 chains are
known to have a 3D magnetic ordering transition [1] or
a spin-Peierls (SP) instability at low temperatures [2], if
there is sufficiently strong coupling with low-lying phonon
modes. On the other hand, compounds with an intrinsic
spin gap, such as weakly coupled integer-spin chains [4]
or even-leg spin-1/2 Heisenberg ladders in a spin-liquid
state, retain their one-dimensionality down to zero tem-
perature [5]. The pure RVB nature of their groundstate
renders them inert to weak residual magnetic couplings
between the quasi-1D subsystems. Thus 3D magnetic or-
dering and SP transitions are suppressed.

In this second class of materials, an applied magnetic
field, h, can decrease the singlet-triplet excitation gap of
the quasi-1D subsystem, and eventually drive it into a
gapless regime if the field exceeds a critical strength, hc1.
A transition to a low-temperature ordered phase due to
residual magnetic couplings becomes possible in this par-
tially polarized regime [6,7]. In this paper, we propose
that 3D ordering as a result of the deconfinement of pairs
of bound spinons by an external magnetic field can be
realized in a wide variety of quasi-1D physical systems,
including anisotropic spin chains, ladders, and dimerized
compounds (Fig. 1). Furthermore, a unified phenomenol-
ogy for the magnetic phase diagram of these materials is
presented, starting from an analysis of weakly coupled an-
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Fig. 1. Sketch of a strongly anisotropic 3D crystal, contain-
ing quasi-1D subsystems. The coupling J ′ between the 1D ele-
ments is small compared to the exchange constant J within the
subsystems. Therefore the compound has quasi-1D properties
at high temperatures (T � J ′), while at low temperatures a
1D to 3D ordering transition occurs if the 1D subsystems are
(driven) gapless.

tiferromagnetic Heisenberg spin-1/2 chains (AFHC) with
an easy-axis anisotropy. We observe that for compounds
such as N -leg spin ladders with plateaus in their magne-
tization curves, m(h) [8], a cascade of N/2 ordering tran-
sitions for N even and (N + 1)/2 transitions for N odd
occurs at high magnetic fields.

We expect magnetic field induced ordering transitions
to occur in most quasi-1D spin systems with a singlet-
triplet excitation gap, including Ising-like chains, dimer-
ized chains, and ladders. Possible candidate materials
include KCuCl3 [9], Cu2(C2H12N2)2Cl4 (CuHpCl) [10],
and the homologous series SrnCun+1O2n+1 [5]. In
spin-Peierls materials, such as CuGeO3 [2] and
α′−NaV2O5 [11], a complete suppression of the spin gap
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Fig. 2. Magnetization curve, m(h), of an antiferromag-
netic spin-1/2 XXZ chain. (a) XY regime with easy-axis
anisotropy: ∆ = 0.5, and (b) Ising regime with ∆ = 1.5.
The insets show the dispersion law, ω(k), for the correspond-
ing spinless-fermion models. Here the magnetic field acts as a
chemical potential, rising from the bottom of the band at hc1

to the top at hc2. In the Ising regime, a spin gap opens around
h = 0, leading to a plateau in m(h).

may be prevented by the magnetoelastic feedback [12].
However, if the lattice is locked in a commensurate
distortion the spin gap can be closed completely by an
applied magnetic field.

Let us first consider a crystal of weakly coupled
anisotropic antiferromagnetic spin-1/2 Heisenberg chains,
described by the Hamiltonian

H1D =
∑
i

[
J(Sxi S

x
i+1 +Syi S

y
i+1 +∆Szi S

z
i+1)−hSzi

]
, (1)

where J > 0 is the antiferromagnetic exchange constant
within the chains, ∆ > 0 is an easy-axis anisotropy, and
h is an applied external magnetic field. The chains are
weakly coupled by H ′ = J ′

∑
〈i,j〉 Si ·Sj with 0 < J ′ � J .

At zero magnetic field, the excitation spectrum of H1D is
gapless in the XY regime (∆ < 1) and massive in the Ising
regime (∆ > 1), with a Kosterlitz-Thouless transition at
the Heisenberg point (∆ = 1) [13]. In the Ising regime,
a finite critical magnetic field, hg, has to be overcome to
completely soften the lowest triplet mode at wavevector π,
and to drive the system gapless.

From a numerical solution of the Bethe Ansatz inte-
gral equations of equation (1) we have obtained the mag-
netic field dependent spinon velocity, u(h), the Luttinger
exponent, K(h), the magnetization, m(h), and the ra-
dius of compactification, R(h), for the effective low-energy
c = 1 conformal field theory [14,15]. Magnetization curves,
m(h), for an XY -like and an Ising-like anisotropic Heisen-
berg chain are shown in Figure 2. In the dispersion
curves of the equivalent spinless-fermion model (insets
of Fig. 2), the external magnetic field corresponds to
a chemical potential. Below hc1 = −J(1 + ∆) the co-
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Fig. 3. 3D ordering temperature (solid line) as a function of
the applied magnetic field in a cubic crystal of weakly coupled
antiferromagnetic spin-1/2 chains. (a) XY limit, (b) XY -like
regime and (c) Heisenberg point. Dashed lines indicate the on-
set of fluctuation regions below which the 3D magnetic corre-
lation length becomes comparable to the inter-chain spacing.

sine band, ω(k), of the spinless fermions is empty, and
u(hc1) = (∂ω/∂k)hc1

= 0. At the special field h = 0,
the quasi-long-range ordered spin density wave within
the chains becomes commensurate with the lattice, and
Umklapp processes open up a spin gap for ∆ > 1, lead-
ing to a plateau in the magnetization curve (Fig. 2b) for
−hg < h < hg [16]. Beyond hc2 = J(1 + ∆), the chains
are fully polarized in the direction of the applied magnetic
field. The particle-hole symmetry about h = 0 is reflected
by the shape of m(h) and the 3D ordering temperature,
Tc(h) (Fig. 3), discussed below.

The low-temperature behavior of the susceptibility
in the gapless regime is determined by the dominant
low-frequency spinon modes at momentum qz = π,
χ1D

+−(qz , ω = 0;T ), which strongly depends on the easy-
axis anisotropy [17]. Here, it has been assumed that the
chains are parallel to the z-axis of the crystal. Further-
more, we have neglected higher-order logarithmic correc-
tions which arise in a more rigorous treatment of the
backscattering processes.

Within the mean field approximation of reference [18],
the low-temperature divergence in χ1D(qz , ω = 0;T )
drives a 3D ordering transition due to the weak inter-
chain couplings, J ′:

χ3D(q, ω = 0;T ) =
χ1D(qz , ω = 0;T )

1 + J ′f(q)χ1D(qz, ω = 0;T )
, (2)

where f(q) is the crystal form factor which we here set to
f(q) = −1 for simplicity (simple cubic lattice). The tran-
sition temperature, Tc, is determined from the locus of
divergence of χ3D(q, ω = 0;T ). In Figure 3, the magnetic
field dependence of Tc is shown in the XY limit (∆ = 0),
in the XY -like regime (∆ = 0.5) and at the Heisenberg
point (∆ = 1). As the easy-axis anisotropy – equivalent to
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a nearest-neighbor repulsion in the spinless fermion pic-
ture – is increased, Umklapp scattering processes lead to
a suppression of Tc(h) around h = 0. In the Ising regime
these processes become relevant, possibly driving another
3D ordering instability. For the following only the regime
∆ ≤ 1 will turn out to be important.

To scrutinize the quality of this approach, we have
calculated the Gaussian fluctuations which decrease the
value of the transition temperature, Tc(h), obtained from
the mean field calculation [19]. This suppression is found
to be rather small (O(1%)) because the corresponding
Ginzburg-Landau parameter is proportional to the ratio
J ′/J � 1. We thus conclude that the mean field treatment
gives a quantitatively adequate description of the ordering
transition. Furthermore, the onset of the fluctuation re-
gion below which the 3D magnetic correlation length be-
comes comparable to the inter-chain lattice spacing is indi-
cated by the dashed line in Figure 3. This precursor region
is quite large (O(≈ 20%)), indicating a sizeable staggered
magnetization, ms, in the ordered regime. Clearly, zero-
point fluctuations are exponentially suppressed by J ′.

Let us now examine magnetic field induced 3D order-
ing transitions in quasi-1D systems with additional inter-
nal degrees of freedom, such as weakly coupled Heisenberg
spin-S chains with S > 1/2, N -leg S = 1/2 ladders with
N ≥ 2, and dimerized compounds.

The low-energy Hamiltonian for a dimerized chain in
a magnetic field is given by

Hdim =
∑
i

[
J
(
1 + δ(−1)i

)
Si · Si+1 − hSzi

]
. (3)

There are three well-known regimes in this system: (i)
for |h| < hc1, it is in a spin-liquid phase with a spin gap
∆SG ' δ2/3| log δ|−1/2 [20] for small δ, and hc1 = O(∆SG);
(ii) for hc1 < |h| < hc2 the system is a gapless spin-density
wave with a field-dependent modulation; (iii) for |h| > hc2

it is fully polarized in the direction of the applied magnetic
field.

In the gapless, partially polarized, region (ii), we can
map the low-energy spectrum of this system onto an ef-
fective XY -like Heisenberg chain (Eq. (1)) with the pa-
rameters: Jeff = J(1 − δ)/2, ∆eff = 1/2, and heff =
h − J(5 + 3δ)/4. This mapping is valid for δ ≈ 1. The
lower and upper critical fields of the gapless regime are
hc1 = J(1 + 3δ)/2 and hc2 = 2J [21]. Considering weak
antiferromagnetic 3D couplings between the dimerized
chains, H ′ = J ′

∑
〈i,j〉 Si · Sj , the qualitative magnetic

field dependence of the 3D ordering temperature, Tc(h),
is thus found to be the same as in Figure 3a.

As seen in the above example, weakly coupled
anisotropic Heisenberg chains in a field can serve as an
effective theory for other quasi-1D quantum magnets
with richer internal structure. Let us now extend this
idea to weakly coupled N -leg spin-1/2 Heisenberg ladders
with the Hamiltonian
HN = J‖

∑
↔

Si,τ · Sj,τ + J⊥
∑
l

Si,τ · Si,τ ′ ,−h
∑
i,τ

Szi,τ ,

(4)
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Fig. 4. 3D ordering transition temperatures of N-leg spin-1/2
Heisenberg ladders as a function of an external magnetic field.
Cascades of transitions are observed for N > 2, driven by 1D
SDW’s of spin-S multiplets on the ladders. We have chosen
an anisotropy ratio J‖/J⊥ = 1/5 and inter-ladder coupling
J ′/J‖ = 1/16 [10].

where i and j enumerate the rungs, τ , τ ′ label the legs,
and the sum marked by↔ (l) runs over nearest neighbors
along legs (rungs). Ladders with even and odd number of
legs are known to have quite distinct features at zero field
(h = 0): at low energies, odd-leg systems can be mapped
onto effective gapless antiferromagnetic Heisenberg chains
with longer-range interactions [22]. In even-leg systems,
relevant inter-band scattering processes open up a spin
gap for any finite positive inter-chain coupling, J⊥ > 0.
This is the reason why approximations based on strong
coupling anisotropies, i.e. expansions in J‖/J⊥ [8,23], give
a correct qualitative picture, extending even beyond the
isotropic (J‖ = J⊥) regime [8]. Furthermore, many physi-
cal ladder materials show coupling anisotropies within the
ladder complex, e.g. a recent structural analysis of the
candidate vanadate ladder material NaVa2O5 suggests a
strong rung-coupling anisotropy of J‖/J⊥ ≈ 13/75 [24].

It has recently been shown that N -leg Heisenberg spin-
1/2 ladders can have up to N/2 plateaus in their magne-
tization curve, m(h), if N is even, and (N + 1)/2 plateaus
if N is odd [8]. These plateaus are related to gaps between
the spin multiplets in the excitation spectra. The partially
polarized regions between the plateaus are gapless, and
can be described by effective massless c = 1 conformal field
theories, corresponding to a spin-1/2 AFHC Hamiltonian
with parameters (Jeff ,∆eff , heff). In Table 1, the numeri-
cal values of these parameter sets, obtained from a strong
rung expansion (J‖/J⊥ � 1) are listed for N = 2, ..., 8
legs.

Applying the mean field approach described above to
a crystal of weakly coupled N -leg ladders, we now observe
a cascade of N/2 ((N + 1)/2) 3D ordering transitions for
quasi-1D ladder subsystems with an even (odd) number of
legs, shown in Figure 4. In the case of weakly coupled even-
leg ladders, the first transition is driven by the formation
of a quasi-long-range ordered SDW of triplets along the
ladder direction, commensurate with the magnetic field,
h > hc1. The following transition (for N > 2) is driven by
a SDW of quintuplets, etc. Depending on the ratio J‖/J⊥,
these phases of different multiplet polarization may
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Table 1. Parameters of the effective low-energy model for the gapless regions of N-leg spin-1/2 ladders in a magnetic field, h.
The effective magnetic field is given by heff = h− hc(0)J⊥ − chJ‖.

N Jeff/J‖ ∆eff hc(0) ch

2 1 0.5 1 0.5

3 (1, 1) (1, 0.5) (0, 1.5) (0, 0.5)

4 (1.075, 1) (0.3489, 0.375) (0.6589, 1.7071) (0.375, 0.625)

5 (1.0169, 1.0961,1) (1, 0.3789, 0.3) (0, 1.1189, 1.809) (0, 0.2958, 0.7)

6 (1.1114, 1.1348, 1) (0.3163, 0.3011, 0.25) (0.4916, 1.386, 1.866) (0.3515, 0.3985, 0.75)

7 (1.0344, 1.1415, (1, 0.3407, (0, 0.8848, (0, 0.2166,

1.1663, 1) 0.2381, 0.2143) 1.5504, 1.901) 0.4891, 0.7857)

8 (1.1364, 1.1882 (0.302, 0.2743, (0.3926, 1.1506, (0.3432, 0.2888,

1.1917, 1) 0.1962, 0.1875) 1.6577, 1.9239) 0.5555, 0.8125)

overlap, and mixed phases can occur (see e.g. Fig. 4d
around h = 1.5J⊥ and 1.8J⊥). The resulting 3D order-
ing temperature does not vanish completely in this case,
but has minima at particular magnetic fields where the
number of the lower multiplet excitations equals the num-
ber of the next-higher multiplet excitations. By analogy,
a cascade in Tc(h) should occur in compounds containing
weakly coupled integer-spin Heisenberg spin chains.

Odd-leg spin-1/2 ladders – as well as half-odd-integer-
spin Heisenberg chains – also have a sequence of ordering
transitions, with the only difference that the onset of the
first transition occurs already at h = 0 (Figs. 4b, c). The
dip features in Tc(h), due to strong Umklapp scattering
(∆eff ≈ 1) become less pronounced at larger magnetic
fields, i.e. ∆eff → 0. This is expected because the effec-
tive spin degrees of freedom of the higher multiplets are
more “classical” as S →∞, and quantum fluctuations are
suppressed at high fields. Finally, as the width of the lad-
der subsystems is increased, the gaps between the various
multiplets disappear, and a quasi-continuous Tc(h)-curve
emerges – as it is expected for the limiting case (N =∞)
of weakly coupled 2D Heisenberg planes.

In summary, we have examined 3D magnetic order-
ing transitions in quasi-1D materials. In the presence of
a spin gap, an external magnetic field can drive the 1D
subsystems gapless, thus inducing long-range 3D magnetic
ordering due to residual magnetic coupling between the
subsystems. For compounds with higher spin degrees of
freedom, such as N -leg spin-1/2 ladders, cascades of or-
dering transitions are predicted to occur, reflecting the
mesoscopic character of these materials. At high magnetic
fields, quantum fluctuations in the quasi-1D subsystems
are suppressed, causing the “dip feature” in Tc(h) – due
to Umklapp processes – to disappear for the transitions
at higher fields. Details of our calculations can be found
in reference [15].
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